Acoustic Analysis and Mood Classification of Pain-Relieving Music

D. Knox
S. Beveridge
L. A. Mitchell
R. A. MacDonald

Abstract

Listening to preferred music (that which is chosen by the participant) has been shown to be effective in mitigating the effects of pain when compared to silence and a variety of distraction techniques. The wide range of genre, tempo, and structure in music chosen by participants in studies utilizing experimentally induced pain has led to the assertion that structure does not play a significant role, rather listening to preferred music renders the music "functionally equivalent" as regards its effect upon pain perception. This study addresses this assumption and performs detailed analysis of a selection of music chosen from three pain studies. Music analysis showed significant correlation between timbral and tonal aspects of music and measurements of pain tolerance and perceived pain intensity. Mood classification was performed using a hierarchical Gaussian Mixture Model, which indicated the majority of the chosen music expressed contentment. The results suggest that in addition to personal preference, associations with music and the listening context, emotion expressed by music, as defined by its acoustical content, is important to enhancing emotional engagement with music and therefore enhances the level of pain reduction and tolerance.